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Abstract

When designing entrances and exits for a stadium, a transit station, ships or similar structures, it is
important to optimize the flow of people which in turn requires that flow to be simulated. In addition to
that, the police, the military, firefighters and others who have to deal with various types of crowds either
to contain and control them or to evacuate them, are more and more using simulated training in their
education and they also have a need for virtual crowds.

Various tools exist to perform crowd simulation, but they are generally not real-time and can be quite
time consuming for a large scale simulation. The national football stadium, Parken, has room for over
40.000 persons so a full scale simulation dealing with an evacuation scenario will be computationally
expensive. When used for interactive virtual training, real-time is an actual requirement and not just a
convenience.

In order to make large scale simulation possible in real-time, or almost real-time, we will implement
a model for human crowd behavior on a parallel processing platform using CUDA (a c based API for
parallel processing) and evaluate the accuracy of the model along with its ability to simulating full scale
scenarios with very large crowds.

Accuracy will be evaluated by comparison with various text book crowd behaviors such as the forma-
tion of ”lanes” and ”vortices” when two or more crowds moving in different directions meet.

We contribute with a clear relation between fluid simulation and human crowds where the controlling
forces inside a crowd are connected with their physical fluid counterparts. The implementation results
in a a method with a time complexity that depends on the size of the domain and not on the number of
agents.
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2 FLOCKING AND CROWDS - PREVIOUS WORK 1

1 Conventions used in this
paper

A large group of people is called a crowd, while a
smaller group is just called a group.

An individual person in a group or crowd is called
an agent. When talking about human crowds
the term ”person” is used interchangeably with
”agent”.

The domain is the area containing the crowd and
the simulation. It will generally be a room, a build-
ing or part of a city.

A goal is a position that the agents want to reach.
It can be exits from or entrances to buildings or
simply just attractive positions.

Human flocking

For training of emergency workers, military and
police there is a need for realistic real-time crowd
simulation. For designers of areas and structures
with a large flow of people there is the same need,
although not real-time. There exist texts such as
the green, purple and primrose guides, further de-
tails in [Still(2000)], which describe in details the
possible problems with crowds and the recom-
mended

For those reasons software simulating crowds is a
valuable tool. In the design phase, crowds can be
simulated and problems can be identified and cor-
rected immediately.

2 Flocking and crowds - pre-
vious work

Previously the behavior of flocks of birds or
schools of fish were considered the result of a
very complex system which somehow allowed the
thousands of individual animals to coordinate their

movement so that they avoided collision among
themselves as well as against external objects and
fleeing predators. The underlying ”programming”
was apparently very complex.

In 1986 Craig Reynolds described his initial
BOID1 model[Reynolds(1987)] describing flocks
of birds. The model employed only three steering
forces among the individual ”birds”. Each force
was based on the closest ones of the other BOIDS.
The forces were ”separation”, do not get too close
to others, ”alignment”, steer into same direction as
the others and ”cohesion”, stay near others. With
only those forces, the flocking behavior was easily
seen.

Later in 1999 Craig Reynolds expanded his orig-
inal work by adding general steering behav-
ior[Reynolds(1999)] which adds goals, path fol-
lowing and some strategy. This helps making
BOIDS more human-like and it introduces obsta-
cle avoidance by directly changing the motion vec-
tor of a BOID away from stationary objects using
the ”steering behavior”. The forces described in
this work are the forces that we will implement,
although from another perspective.

Dijkstra et. al. published a new method of crowd
simulation[Dijkstra et al.(2000)Dijkstra, Timmer-
mans, & Jessurun] used in simulation of pedestri-
ans. It was different from the BOID model in that
it was a grid based cellular automate. This method
is simpler, but the the larger the grid cells, the less
accurate and the smaller the cells, the more com-
putational expensive the model is. The method can
also have problems with irregular obstacles due to
the regular cells. We take a somewhat similar ap-
proach in how we managed the simulation domain,
though we will not make it entirely a discrete grid
but more of a hybrid.

The previously mentioned methods were all local
models in that the BOIDS/agents each reacted to
their immediate neighborhood and were controlled
by attractive or repulsive forces exerted by that
neighborhood.

1Bird-like object
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Simulation based on static (global) potential
fields[Kirchner & Schadschneider(2002)] were
used to test the evacuation of buildings, but failed
to deal with changes in the environment. While the
scene may be static, the crowd moving in it is not,
and that crowd is also an obstacle.

The alternative is to consider the agents part of
a whole, much like the individual particles in a
fluid, and perform physical flow calculations on
that whole. In [Clements & Hughes(2004)], a
set of differential equations is derived and used to
simulate the evolving potential field of a moving
crowd.

Later this evolving field was used for simu-
lation[Treuille et al.(2006)Treuille, Cooper, &
Popović] by adding agent particles and letting
them be moved by the field. This work was shown
to have many of the properties seen in real crowds
and our approach is quite similar to what they did,
in that we will also consider crowds a fluid and cal-
culate the fields describing the crowd and its mo-
tion.

A PhD thesis by Keith Still [Still(2000)] takes a
very detailed look at crowd dynamics and goes to
great lengths to calibrate simulations with actual
observed behavior on a large scale. The simula-
tion results clearly show that one can in fact create
very accurate simulations of human crowd behav-
ior. This demonstrates that crowd simulations are
not just for fun and games but can be used to make
life or death decisions about various structures and
evacuation procedures.

3 Human flocking

The behavior of a human flock, henceforth a
crowd, is quite different from that of a flock of
birds or a school of fish. There is generally more
planning involved and even though each mem-
ber of the crowd, each agent, is influenced by
the position and motion of nearby agents, there is
a stronger individuality. However intelligent hu-
mans are compared to a school of fish, we are

still all animals and are all subjected to the same
fundamental programming. Research into human
behavior and human crowd behavior [Krause &
Dyer(2008)] has shown that we behave very much
like flocking animals if the large scale individual
goals are removed and that we are physically de-
signed to mimic the behavior of other agents in a
crowd by specific mimicking neurons in the brain.
In other words, the basic flocking behavior stems
from our own brains wanting to mimic the behav-
ior of those around us. Human flocking behav-
ior thus consists of a basic animalistic part, just
as with the BOIDS, and a more complex purpose
driven part. When people have been placed in
large rooms [Krause & Dyer(2008)] and asked to
walk around without any real purpose apart from
just moving and not bumping into each other, then
they behave like flocking animals.

3.1 Basic behavior

This is BOID-like behavior. Agents do not over-
lap and will be pushed away from each other when
they are very close by separating forces. Only
when there is a high external pressure will two
agents stand right next to each other. The mag-
nitude of the repulsive force is largely culture de-
pendent as described in [Chattaraj(2009)] and so is
the attractive force which makes individual agents
stay in the vicinity of each other through cohe-
sion forces. When agents move about, they tend
to move more or less in the same direction as their
neighbors, thus keeping the change of neighbors
low.

3.2 Individual goals within a crowd

When considering a scene, such as a building evac-
uation, filling a stadium or a crowded transit sta-
tion, there will generally by a limited number of
goal positions which the agents try to move to-
wards. They do so by finding an optimal, under
certain constraints, path towards the goal and then
move along this path. While navigating the path
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they will have to consider other agents and try to
stay close to the optimal path, maintain a high ve-
locity and avoid bumping into other agents as well
as fixed obstacles.

An alternative to trying to reach a specific goal po-
sition is to get away from somewhere. This could
be a fire, a madman with a bomb or a wild animal.

The optimal path is described by Kieth
[Still(2000)] as ”path of lest effort”. This
means that the optimal path may very well be
longer than the shortest path, but it will still cost
the person the least effort by avoiding congested
areas or avoid moving against the local motion of
the crowd.

3.3 Level of agent’s knowledge

When looking for the optimal path, one has to
consider every possible influence along the way.
This is obviously a problem for agents with limited
knowledge. They may know the static domain, but
they generally do not know exactly what is around
the next corner. Therefore they may opt for an
apparently optimal path and then turn the corner
and run straight into a highly congested area where
they can only move very slowly and with great ef-
fort.

A real agent in a human crowd will generally be
able to gather information from observing the be-
havior of other agents. This advanced knowledge
is a problem when doing real time simulation and
it will often be simplified.

There are however things which are not know and
cannot be inferred. Unless the agent has an (unre-
alistic) dynamic map of the domain showing every
static and dynamic obstacle, or can see everything
from its current position, then it will make deci-
sions based on imperfect knowledge and those de-
cisions will often be more or less flawed as seen in
figure 2 where one of two apparently equal paths
is blocked at a location which is out of sight.

Figure 2: Two paths but one is obstructed at a po-
sition which is out of view

Reasoning about effectiveness of a given
behavior An actual person will make decisions
based on its observations of the surroundings and
knowledge about static paths, but it will also learn
from the results of its actions. If an apparently
good strategy just doesn’t work, then the person
will realize that the strategy for some reason is
flawed and then make a new one. This is not some-
thing that we have found in the literature, and we
will unfortunately also not implement it here.

3.4 Implemented subset of crowd
behavior

This section will look at a few specific complex
behavioral patterns that we will attempt to support
in our implementation - in addition to the basic be-
havior.

3.4.1 Lane formation

This is also sometimes referred to as fingers.
When two groups of agents collide head on, one
might expect chaos to ensue when the front agents
collide with each other and cannot move around
to the sides. After the initial collision collisions
would then repeat over and over while the groups
pass each other. What does in fact happen, as de-
scribed in [Still(2000)], is that quite quickly the
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front agents are pushed in between each other, but
the following agents do not repeat this collision
when they enter the other group. Instead they
follow the agents in their own group which hap-
pens to move in the same general direction as they
want to themselves. This behavior opens up a de-
sirable path behind an agent which others follow.
Shortly after the initial collision, the groups will
have formed into variable size lanes and the agents
will generally move at close to their desired top
speed.

3.4.2 Vortices

When groups of agents meet at steep angles
they tend to form vortices. Rather then just
move straight through each other, and forming
lanes, they begin to spin slightly around the cen-
ter of the collision as mentioned in [Treuille
et al.(2006)Treuille, Cooper, & Popović]. Indi-
vidual agents may even perform complete revolu-
tions, as seen in figure 3, if the pressure is high
enough from a large number of groups all crossing
at once.

3.4.3 Braess’s paradox

Braess’s paradox is an example of behavior seen in
crowds but not in fluid dynamics. This is one of the
reasons that simple fluid dynamics is not enough in
itself to accurately describe crowd mechanics. The
paradox itself is concerned with a routing problem
in which it worsens the congestion to add more
routes. It is described in general terms relating to
routing in [Wainwright(2007)] and more related to
crowds in [Still(2000)].

In a crowd context you can describe it with a group
of people trying to exit a room through two doors,
as seen in figure 4. Each half of the agents will se-
lect their closest door and exit without much con-
gestion. Then a third door opens and most agents
will see that this door is closer and will then at-
tempt to exit through it. Before all agents would

Figure 3: This agent will constantly be pushed by
the pressure force from the four groups in a way
so that the agents movement vector, seen as a thin
line, is turned counter clockwise. unless its own
path following force is strong enough to push it
through the opposing groups it will keep circling
the center of collision

exit through two doors while they will now mostly
exit through one door.

In this simplistic setup most real human crowds
would have enough common sense to avoid the
congestion and exit through all three doors, but
if the upper and lower doors were moved a little
farther away and if the room was on fire and the
crowd panicked, then that common sense would
quickly be lost.

For this to be simulated, the crowd would have to
employ a less than optimal pathfinding which does
not take local congestion into consideration. If the
pathfinding is perfect and is looking at congestion
as a parameter then the agents will be very clever
and avoid Braess paradox all together.
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Figure 4: Braess’s paradox in action. First a crowd
tries to leave a room through two doors. Then a
third door opens in the center and now most agents
in the crowd will try to leave through that door.
Congestion builds up and the exit rate drops.

4 Massive parallelism and
CUDA

Some algorithms consist of a large number of se-
quential steps. Step 2 cannot be started before step
1 is completed etc. Those algorithms have no use
for more than one processor. There is only one
small job to work on at a time.

Other problems are highly parallel and consist of a
number of smaller jobs which can be completed in
any order. This means that if more than one pro-
cessor is available, then each can handle a subset
of the many small jobs and thereby the entire pro-
cess can be speeded up. How much of a speedup
depends on the overhead associated with partition-
ing the entire problem into a set of smaller prob-
lems and gathering the sub solutions to one whole
solution.

Luckily one example of a problem which is paral-
lel in nature is that of simulating a crowd. Each
individual agent in a crowd will consider the cur-
rent state of its surroundings and decide on what to
do next. Then every agent will move at the same
time. Each such observation and action will de-

pend only on the current state of the system and
not on what other agents are planning to do right
now.

This is generally how complex systems are sim-
ulated. A current state is evaluated and the next
state is calculated based on the current. A sys-
tem is described through a set of state variables
which for a crowd at time t might be state(t) =
[x0 y0 vx0 vy0 xn yn vxn vyn] describing position
and velocity for n agents. In order to advance from
state(t) to state(t +∆), ∆t in the future, a set of
calculations will have to be done, but the impor-
tant part is that that all calculations will depend on
state(t) which is already available. This way no
calculation will depend on the result of any other
calculations and state(t +∆) can be calculated in
any order.

Amdahl’s Law Amdahl’s Law (1) describes the
expected performance gain from changing serial to
parallel code. This is based on the fraction of se-
rial code that can be parallelized and the number of
processors it can be distributed on. This equation
does not take into considerations how much time
will be used to split the problem and gather the so-
lutions. Often having a large number of processors
will mean having a architecture where the proces-
sors and their local memory is separated by high
latency and therefore this overhead can be substan-
tial. The larger the sub problems are, the less the
comparative overhead from sending problems and
solutions around there system will be.

When the parallel implementation is on a mod-
ern graphics card, or a super computer cluster, the
value of N can be considered a very high num-
ber essentially removing the term P/N. Now the
speedup depends only on P, the fraction of code be-
ing parallelized. It is clear from the equation that
increasing the value of N does little for the speedup
while increasing P has a much greater influence. If
P is 0.90 then the speedup will be 10 times for an
infinite N.

This is interesting in that even with an infinite
number of processors and code which is 90% par-
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Figure 5: Amdahls law plotted as a function of P
and N

allelizable, the speedup is only 10 times. In figure
5 the development of speedup as a function of P
given an infite number of N is shown. The con-
clusion is easy to make and it is that it is good
to have many processors, but the important thing
is to make heavy calculations entirely parallel. If
not then all the processors in the world does little
good.

For our implemented crowd simulation both the
number of processors and the fraction of parallel
code is very high. All the simulation code will
be parallel and only initialization and visualization
will be serial.

S =
1

(1−P)+ P
N

Amdahls equation showing the expected perfor-
mance gain by parallelizing previously serial code

(1)

4.1 Graphics card processing and
CUDA

While super computer clusters are not available to
most users, there is an alternative which is very
common indeed. This is the Graphics Process-
ing Unit GPU and its fast memory on modern
graphics cards. The graphics card which currently
holds the processing record is the ATI Radeon
HD 5800 which reportedly delivers 2.700 GFlops.
Ten years ago that would earned one such card a
third place on the list of 500 fastest super com-
puters [Top500Org(1999)]. Graphics cards of to-
day generally support running in groups of more
than one. This can boost performance further and
Nvidia is also marketing their Tesla computation
boards which are essentially graphics cards with
more memory and no graphics output.

CUDA is an acronym for Compute Unified Device
Architecture and was released by Nvidia in 2007.
It is an API which allows easy access to the com-
puting power on the graphics cards. Ever since the
first graphics cards supported user defined shader
code, those shaders have been used for computing
unrelated to graphics, but the code would have to
be masked as graphics by doing render calls from
some graphics API. With CUDA the code is writ-
ten in a subset of the c language and is merely
compiled for and executed on the GPU as would
it be on any other processor.

CUDA brings more control to the programmer.
A shader cannot read from arbitrary addresses in
memory but generally has to use texture lookups
to take in the data it is going to work on. The con-
cept of shared memory (section 4.6) is not exposed
to shaders at all, and this memory is the fastest
on the entire device. With a shader there was no
way to synchronize the individual threads execut-
ing the shader code. In CUDA this is possible for
certain groups of threads. Finally CUDA allows
faster copying of data to and from the device than
what was possible with shaders where everything
had to pretend to be graphics.

CUDA only works on a CPU (emulation for de-
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bugging) or Nvidia GPUs and lack support for
other vendors. Currently two alternatives to
CUDA are being rolled out. They are OpenCL
and Direct Compute. OpenCL will work with
all graphics cards supporting directX10 or higher
while Direct Compute requires DirectX11 capable
hardware.

Compute capability There are different levels
of CUDA capable devices. Currently there exist
only devices with compute capability 1.0 to 1.3.
There are subtle differences between the differ-
ent compute capabilities; mostly devices of higher
capabilities place fewer restrictions on the code.
Coalesced memory transactions section 4.8.4 on
higher devices for example are easier to set up
right since data alignment and access pattern is
more free.

This project was done using a GeForce 9800 GT
which has compute capability 1.1, as do most
ordinary graphics cards currently, and the text
is written with that level of capability in mind.
Please refer to the CUDA programming guide
[Nvidia(2007)] for further details.

4.2 CUDA applications

A CUDA application consists both of code running
on the CPU, acting as the host, and code running
on the GPU, being the device. The host code has to
initialize CUDA, move relevant data to the device
and call the device code. There are two types of
device code, namely kernel code and pure device.
The kernel is callable from the host while pure de-
vice functions are only callable from the device.

The host code can be ordinary c or c++2 and
can perform other tasks relevant to the application
apart from running CUDA kernels. Device code
on the other hand is a subset of c and does have a
few restrictions which are generally not very lim-
iting.

2At the time of writing the c++ integration is considered
an alpha feature and is not reliable

• No recursion

• Cannot declare static variables inside func-
tions

• Does not support a variable number of ar-
guments - default arguments are supported
though

• Pointers to functions are not allowed

• Kernel functions must return void

• Kernel functions can only receive 256 bytes
of arguments when called

• Limited to 2 million instructions

4.3 Device hardware

A device consists of a number of multiprocessors,
hereafter called MP as seen on figure 6. Each MP
is capable of running several threads at the same
time without any time slicing. On a MP there are
registers and a local memory with very low latency
- as low as zero due to how instructions are exe-
cuted.

There are also two caches. One for constant
lookup, and one for texture lookups. The device is
the GPU meaning that the device is one large pro-
cessor. The global memory is off chip and is not
considered part of the device itself. Each MP has
direct access to global device memory and cached
access to same memory when used for constants
or textures.

4.4 Threads and blocks

Threads are collected in larger groups called
blocks and the blocks are laid out in a grid. The
total number of threads is defined by specifying
how many blocks is used and how many threads
there is in each block.

Blocks are conceptually laid out in a 1D, 2D or 3D
pattern and threads are laid out in a similar way
inside the blocks. This layout has nothing to do
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Figure 6: One device contains global device mem-
ory and N multiprocessors. Each multiprocessor
contains shared memory and one instruction de-
coder as well as M processing cores and constant
and texture caches. Each processing core contains
its own registers

Figure 7: 4 blocks each containing 3 threads. The
blocks are laid out in 2D while the threads are laid
out in 1D. Note that real world blocks cannot con-
tain only 3 threads!

with how they are positioned in hardware, it is only
to make it easier to map from a problem domain to
the thread domain. If the problem is simulation
of heat diffusion in a 2D domain, then it would
seem natural to place the blocks and threads in a
2D arrangement so that blocks and threads have
2D identifiers mapping easily to the 2D space of
the problem.

Thread blocks The reasoning behind partition-
ing into blocks is that threads inside the same
block are able to be tied strongly together. They
can synchronize their execution and they can work
on the same low latency shared memory. Threads
from different blocks cannot synchronize in any
way. While they can read from and write to the
same variables in global memory, doing so will
give rise to all sorts of race conditions or require
the use of special simple atomic operations.

Block and thread IDs Inside the device code
it is important to know exactly which of the many
threads is the current one in code. This is done
by looking at the predefined variables threadId

and blockid section 4.4 as well as gridDim and
blockDim. With that information it is easy to see
exactly where in the grid the thread is located so
that it can figure out exactly what part of the prob-
lem it is supposed to work on and where it should
store its results.

While it is beneficial to cooperate among threads
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of the same block, blocks can not be arbitrarily
large since each MP has limited resources and a
block cannot be shared among MP. For this rea-
son, and some other performance considerations
explained later, the code is generally divided into
several blocks.

The threads in a block are grouped into so called
warps which are smaller groups of 32 threads each.
The reasoning behind this is that a MP can execute
several threads at the same physical time. Each
MP has a single instruction decoder and several
processing cores. This means that the same in-
struction can run on different data at the same time.
This is known as SIMD, single instruction multi-
ple data, and as long as every thread in a warp per-
forms the same operation at the same time, as seen
in figure 8, they can do it simultaneously. If they
do in fact diverge due to a conditional branch then
they will not execute in parallel but will be serial-
ized, as seen in figure 9 which is explained further
in section 4.8 dealing with performance.

4.5 Thread synchronization

Only threads in the same block can synchronize.
This is done by calling __synchthreads which
is a thread barrier. No thread can pass it be-
fore all threads in the same block have arrived.
__synchthreads is only allowed in conditional
code if all threads in a block are guaranteed to
execute the code. This is to prevent deadlocks
with some threads waiting at the barrier and oth-
ers never arriving.

It should be noted that while threads in the same
block have the means to cooperate, it is still up to
the programmer to ensure that there are no race
conditions. If two threads read and write the same
location in memory then the result is undefined and
if two threads perform atomic operations such as
increment on the same location the operations will
execute as expected but the order in which they
execute is undefined.

4.6 Memory

The graphics card has a GPU which contains sev-
eral multiprocessors MP. Each MP has memory
that is very close to the processing cores. This
memory is very fast but it is also quite limited
in size. On the card, but outside the GPU, there
is a large DRAM memory. This memory is quite
slow in comparison, but it is also plentiful On-chip
memory is roughly 100 times faster than off-chip
memory.

Those two types of memory are split into several
subtypes.

• Registers - Multiprocessor memory, 8192 32
bit registers shared among all threads on a
multiprocessor. They are very fast taking no
extra clocks to access.

• Shared memory - Multiprocessor memory,
very fast but has a limited size of 16 kB per
processor

• Global memory - Device DRAM, large mem-
ory. This memory is not cached and is con-
sidered slow.

• Constant memory - Device DRAM, this
memory is cached on the GPU and read only.
It is limited to 64 kB.

• Thread local memory - Device DRAM,
smaller uncached region of 16kB per thread.
Registers spill into this memory when
needed.

• Texture memory - Device DRAM, this com-
pares to constant memory in that it is read
only and is cached on the GPU. Where con-
stant memory had an ordinary linearly ad-
dress based cache, texture memory employs
a 2D cache which is better suited to take ad-
vantage of 2D locality.

The host code has access to all DRAM memory
except thread local memory.
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4.7 Textures

Global memory can be used as textures and read
through special texture fetches. A texture fetch is
different from ordinary memory access in that the
texture unit will, if so desired, perform indexing
conversion, data value conversion and interpola-
tion as well as a cache. A texture can be accessed
by indexes from 0.0 to 1.0 or from 0 to width-1 and
height-1. A byte value of 0xff can be scaled so that
it maps to 1 or 0xff and texture lookups in between
texels can be the linearly interpolated values of the
closest texel neighbors.

Furthermore the texture unit can make the texture
coordinates clamp to the edges or wrap around and
repeat. oundary conditions are easily implemented
using clamped coordinates by simply writing the
appropriate values into the outer most texels.

4.8 Performance considerations

While code written for parallel execution on a
CPU can pretty much be moved directly to the
GPU using CUDA, the performance would not
greatly increase unless the difference in hardware
is taken into consideration. In [Nvidia(2009)] a
very thorough walkthrough of performance con-
siderations is presented.

4.8.1 Keep occupancy high

A MP has 8.192 registers available for all its
threads. There can be 768 active threads active at
the same time. If all threads are active and each
one uses 10 registers, then 7.680 registers are used.
If the threads require 11 registers, then fewer can
be active at the same time and occupancy drops.

Additionally, if 5 thread blocks, each consisting of
128 threads, are loaded, that will use 640 threads
or 84% of the maximum. Blocks cannot be par-
tially loaded. It is all or nothing.

This way the register use as well as the size of the
thread blocks can affect how effectively the thread

blocks can be packed on the MP and how much
”space” is wasted.

4.8.2 Branching within warps

The multiprocessor executes warps of 32 threads
at the same time using SIMD. This means that
the instructions, though not the arguments, exe-
cuted by each of the 32 threads should be identi-
cal. When they are, they run at the same time, but
when the thread code has split into different code
paths due to conditional branching, they cannot
execute simultaneously. The MP handles this by
taking each branch sequentially and disabling the
threads that should not execute the current code.
When the branches later converge, the threads will
again run in parallel. If a warp is written so that
all 32 threads run different paths then it will exe-
cute a single thread at a time and do this 32 times
leading to a poor performance. It is therefore quite
important to ensure that threads in the same warp
branch as little away from each other as possi-
bly. If threads in different warps branch differ-
ently, then that is not an issue. Each warp will
run its turn and run its threads in parallel. This is
something that can be exploited in the code since
it is possible to calculate warp id based on thread
id.

4.8.3 Global or local memory

Global memory is the only memory accessible
from the cost and it is therefore this memory that
contains the actual job and the eventual result, but
it is also very slow. One should always try to avoid
using the global memory when possible.

The way this is generally done is by organizing the
code in such a way that threads in the same block
work on more or less the same subset of the en-
tire problem. This way the first task for the threads
in a block is to fetch the relevant data from global
memory once and for all and then let all threads
work on that data. While they work, they will
not access global memory and when they are done
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Figure 8: When all threads in a warp executes the
same code, the threads will run in parallel at the
same physical time. The operations are identical,
only the data is different among threads

Figure 9: When the threads in a warp branch away
from each other, then their different operations will
be serialized and run one after another. Only after
the threads merge into the same code path again
will the threads resume the parallel execution

they can write the locally stored results into global
memory.

4.8.4 Coalesce memory transactions

A single read or write operation to or from global
memory can move up to 128 bytes if every consec-
utive thread access consecutive addresses with the
correct alignment of the first address. If it is the
case, then the threads perform a collective read-
/write, and if it is not then every thread will per-
form its own read/write which again affects per-
formance negatively.

The memory being accessed must satisfy certain
conditions. Every thread in a half warp must ac-
cess data of the following size.

• 4 byte words which results in one 64 byte
transaction

• 8 byte words which results in one 128 byte
transaction

• 16 byte words which results in two 128 byte
transactions

Additionally the data needs to be aligned correctly
and abide the following rules.

• All 16 words of data must be contained within
a single continuous memory block starting
and fill it completely.

• The continuous memory block must start at
an address which is a multiple of its size.
Thus N byte blocks must start at address
0,N,2N,...,kN

• Threads in the half warp must access the
words in sequence threadn accesses wordn

4.8.5 Hide memory latency

When a warp accesses memory, there is a delay be-
fore the transaction completes. During this delay
the warp is blocked. This allows other warps to ex-
ecute in the mean time. They will eventually also
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access memory and block which lets other warps
execute and so on. Eventually the first warp will
have completed its transaction and will be ready to
run again.

What this means is that with a single warp the la-
tency will have a profound effect, but with many
warps the delay can be spent performing calcula-
tions.

4.8.6 Performance summary

Local memory Local memory is fast, global is
slow, unless it has been cached. The local memory
can be thought of as an on chip cache which the
user is free to fill as he sees fit.

Branching Every warp of 16 threads should fol-
low the same code path 4.8.2. If it is known that
some threads need to follow one path while others
follow another then they should be laid out so that
threads of the same path are in the same warps.

Size of structures If every thread needs ac-
cess to a structure 10 bytes large, then memory
can be saved by aligning the structs with start ad-
dresses offset by 10 bytes, but that would prevent
coalescing 4.8.4. It would therefore be better to
waste 6 bytes following every struct thus making
the structs start every 16 bytes and support coa-
lesced memory transactions.

Have enough threads While it may sometimes
be simpler to have a few complex threads it helps
hide the fact that memory is slow when there are
enough threads on a multiprocessor so that one
thread can pause on a memory transaction while
others carry on doing calculations.

Figure 10: Domain is divided into tiles. White tiles
are passable while gray ones are walls. Each agent
exist in one tile but has a real number value posi-
tion within the domain.

5 Implementation

The simulation will take place in a rectangular do-
main which is discretizised into a large number of
square tiles as seen in figure 10. Each may or may
not be large enough to hold multiple agents at the
same time3. The domain always has a wall at the
boundary cells to help generalize certain parts of
the code.

Though the domain is partioned into discrete cells,
the position of the agents are real values numbers.
Agents cannot travel outside the domain and the
inside of the domain will be made up of empty tiles
which the agents can occupy and tiles with wall in
them which agents may not occupy.

An agent is defined by the following parameters.

• Position, a 2D real valued vector which is al-
ways inside the domain.

• Velocity, a 2D real valued vector describing
velocity and direction of the motion. The ve-

3This depends on how unwilling agents are to pack to-
gether
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locity goes from 0 to the agents maximal ve-
locity.

• Goal, an integer index defining which goal
among a set of goals this agent seeks. A value
of -1 means the agent has no goal.

• Maximal velocity, the maximal velocity this
agent can move at. This value may be equal
for all agents or it may be selected randomly
at initialization.

• Inertia, a real valued number which acts as
mass in calculating accelerations a = F

inertia .
This value may or may not be the same for
all agents. It can be seen as a combination of
mass over strength and laziness.

Simulation Simulation is done by numeri-
cal integration with Explicit Euler as seen in
(2). The state variable S is a vector describ-
ing the combined dynamic state variables of ev-
ery agent S = [x1,y1,vx1,vy1, ...,xn,yn,vxn,vyn].
∆t is the time step used and S′(t) is the first
derivative of the state variables at time t i.e.
[vx1,vy1,ax1,ay1, ...,vxn,vyn,axn,ayn]. Explit Eu-
ler integration is not a very accurate numerical in-
tegration scheme but it is very simple to implement
and as ∆t goes to zero, so does the truncation error.
We are not interested in very large time steps since
we will visualize the simulation step by step and
the system is not a very stiff one.

Walls An agent cannot be in a tile that holds a
wall. There are however no forces keeping the
agent from entering the walls. If an agent after a
simulation step is found to be inside a wall, then it
will simply be moved back out as seen in figure 11.
The agent is at 1 before the simulation step. It is at
2 after the step and is then moved out to 3 to abide
by the do-not-enter-a-wall constraint. The compo-
nent of the agents motion vector which points into
the wall is set to zero.

The reason walls are not implemented as forces
keeping agents out is that an agent should not have

Figure 11: An agent penetrating a wall will be
moved back against its movement vector until it
is no longer inside the wall

a problem with moving right next to a wall but
should never be inside the wall. This would re-
quire a repulsive force which was zero outside the
wall and infinite inside the wall. This would mean
that the force should be a discontinuous step func-
tion going from zero to infinity. Such functions
will make the simulated system ”stiff” and very
hard to work with.

S(t +∆t) = S(t)+S′(t)∆t (2)

5.1 Crowds as fluids

As mentioned in section 2 and in [Treuille
et al.(2006)Treuille, Cooper, & Popović] a crowd
can to a certain extent be handled by variations
over methods designed for fluid simulation. We
will let us inspire by just that and the selected fluid
simulation model is Smoothed Particle Hydrody-
namics SPH which is covered in detail in [Liu &
Liu(2003)] and [Gingold & J.(1977)]. Refer to
those sources for detailed information.

The fluid based model is attractive in that there ex-
ist a clear mathematical tool set for fluids. While a
BOID-model, where the controlling forces are de-
scribed in more abstract terms, can give the same
results, we feel that a fluid model with some sup-
port from pathfinding will lead to a clearer defini-
tion of the crowds motivation and action.

What we want from the fluid method is the deriva-
tive S′ of the systems state variable i.e. the forces
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acting on the agents due to the influence of the
other agents.

A very brief summary of the SPH elements which
we will be using is, when put in crowd perspective,
the following.

SPH A crowd is considered a fluid. Each agent
is a macroscopic fluid particle. The agents do have
specific point positions, but their physical bound-
aries are smoothed so that they are not point im-
pulses in the simulation domain but rather Gaus-
sian smoothed points centered at the agent’s posi-
tion.

Smoothing by convolution Convoluting an
impulse with any other function will result in that
function translated to have its origin located at the
position of the impulse. In other words, convo-
luting an impulse with, for example, a Gaussian
function gives the same result as drawing a Gaus-
sian with mean at the impulse. It is just another
way of drawing the Gausian indirectly using con-
volution. For n impulses we write n impulses and
then perform one convolution, thereby drawing the
sum of n Gaussians. As seen in figure 14 two im-
pulses and one convolution results in the sum of
two Gaussians. This is not a method we have seen
used in the literature, but it seems like the best way
of doing it when using CUDA.

Ordinarily SPH implementations do not discretize
the domain and explicitly smooth with a kernel.
Instead they sum the contribution over all other
particles and weigh each other particle with the
distance based kernel function - at the location of
all other particles. The reason we did not follow
that path is twofold. Such an implementation has
a timecomplexity which depends on the number
of agents and it requires some support code like
spatial hashing to make it reasonable fast. The pri-
mary reason, however, is that we do not only need
to evaluate the field at the location of the agents.
We need the entire (discretezised) field to be eval-
uated for the dynamic pathfinding, so in the end
there is little choice.

Figure 12: Velocityfield with four agents velocities
written as impulses

This method is ok for 2D, but in 3D the domain
would have to be rather rough to not use an exces-
sive ammount of memory and to not take too long
to convolute.

Density The density ρ of a crowd is the sum of
the smoothed density impulses of all agents as seen
in figure 14. Density is mass divided by area (in
2D) ρ = kg

m2 .

Separation and cohesion Pressure P relates
linearly to density as P = ρc where c in some texts
is the speed of sound in the fluid material. For
crowds the value of c is just a scalar describing the
unwillingness to be compressed.

The separation forces is then the negative gradient
of the pressure field −∇P and the cohesion force
is the positive gradient ∇P.

Steering Simple BIOD-like agents will not only
push each other (forward or backwards) when
moving into one another, they will also influence
the neighbors that they move along side, to speed
up or slow down to match each other’s speed. This
neighbor influence is controlled by viscous forces
in a fluid. Viscous force is the vector laplacian of
the velocity field ∇2v scaled with the viscosity co-
efficient, or in crowd terms: the agents tendency to
steer together with the neighbors. An overview of
pressure and viscous forces in a fluid can be found
in [Tritton(1988)]
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Figure 13: Velocityfield with four agent velocities
smoothed with a Gaussian

Figure 14: Two impulse densities, located at the
agents positions, are smoothed with a Gaussian
kernel resulting in the sum of two Gaussians. The
individual Gaussians are shown as illustration but
are not explicitly calculated

Crowd related fluid properties The properties
of a fluid that are relevant for the crowd model are.

• Density ρ which is important for finding a
path which avoids congestion and for visual-
izing the crowd

• Velocity field v which is required for find-
ing paths that move in the same direction as
the other agents and avoid agents moving in
oposite direction

• Vector Laplacien of velocity field ∇2v which
is used in viscosity force calculations that
make the agents steer together

• Pressure gradient ∇P which is needed to find
the direction and magnitude of the separation
- as well as for cohesion, which is not a true
fluid property but one that can also be derived
from the pressure gradient

5.1.1 Smoothing agents

In figure 14 impulses and their smoothed coun-
terpart are shown. The smoothing is done with a
smoothing kernel that scales the contribution of the
agents to the field, at a specific position, by con-
sidering the gents distance and direction from that
position. A Gaussian smoothing kernel is seen in
(3) where r is the distance from the position in the
field for which we seek a contribution, σ2 is the
variance and a is a scaling factor ensuring that the
function has unit integral. There are other require-
ments for smoothing kernels which are detailed in
[Liu & Liu(2003)].

a e−
r2

2σ2 (3)

Unit integral All kernels should have unit in-
tegral. This ensures that whatever function is
smoothed by the kernel, the smoothed function
will have the same integral. In other words; the
”material” is distributed differently but there is no
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Figure 15: Impulse functions on top of agents were
smoothed by a Gaussian

more and no less of it after smoothing4. The result
of smoothing several impulse functions located at
the agents positions in 2D is seen in figure 15.

One can argue that an agent does not have a
smoothed but a single well defined position, which
is true. It is smoothed, however, to calculate the in-
fluence of an agent, which reaches beyond the ac-
tual space occupied by that agent. We also need to
consider things like a crowd density and have it be
defined by a differentiable function usable for cal-
culating gradient based forces. An impulse func-
tion on top of every agent would give none of this.

Kernels While a Gaussian smoothing kernel is
reasonable for density calculations, there is a prob-
lem with using it when calculating pressure forces.
The derivative of a Gaussian goes towards zero
when the distance from the mean goes towards
zero as seen in figure 16. This means that the re-
pulsive force is strongest for an agent distance of 2
(with the specific choice of variance for the Gaus-
sian in the figure) and that agents closer than 2 will
be less influenced to move away from each other,
and will eventually not be pushed away at all when
the agents overlap. This is not realistic for human

4An agent which is smoothed out over the edge of the
domain will actually ”loose” mass. There exist schemes to
deal with this [Liu & Liu(2003)], but in this implementation
that problem is ignored

Figure 16: The first derivative of a Gaussian func-
tion in 1D is zero when the distance from the mean
is zero

agents in a crowd.

Spiky kernel An alternative kernel is the
”spiky” kernel function (4) described in [Müller
et al.(2003)Müller, Charypar, & Gross]. In that
text the kernel is defined for 3D space but we will
convert it into a 2D kernel.

In (4) r is the distance between agents and h is
the support radius. The support is the distance at
which the kernel value drops to zero and agents
farther than r apart have no influence on each other.
The spiky kernel has a first derivative that does
not approach zero as the distance between agents
decreases. Instead it has a discontinuity which
ensures that the calculated force will always in-
crease when two agents move closer together and
the force will change to the opposite sign if they
pass each other. The kernel and its derivative is
shown in figure 17.

Since kernels must have unit integral and we will
be working in 2D, the basic function (h− r)3 have
been scaled by the 2D integral. The function is cir-
cular so this is best integrated in polar coordinates
and is πh4

2 and the scaling factor is therefore 2
πh4 as

seen in (4). We also need the partial differential of
the function which is seen in (5).
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Figure 17: The spiky kernel along with its first
derivative

spiky(r,h) =
2

πh4 (h− r)3 f or r ≤ h, else zero

(4)

∇spiky(r,h) =− 6
πh4 (h− r)2 r

‖r‖
(5)

Seperabel convolution If a convolution kernel
is separabel, then a 2D convolution can be done as
the sum of two 1D convolutions. This is much less
work but it does require the kernel to be separabel
which means that it should be the outer product
of only two vectors and therefore have only rank
1. While this is true for the Gaussian kernel and
its derivatives, it is not true for the spiky kernel
which has rank 20. Doing a SVD decomposition
of the spiky kernel shows that the diagonal values
are quite close to 0 except for the four largest. This
means that even though the kernel is not separabel,
it is primarily the sum of only four outer vector
products. We could therefore still gain some of the
performance benefits from separabel convolution
using the spiky kernel, though it would be more
complicated and not as accurate as a non separabel
convolution using the actual kernel. In this paper
we will, due to the dificulties with the spiky kernel,

not use separabel convolution, but leave that as an
option for further optimization later on.

Frequency domain convolution 2D convolu-
tion can be very time consuming for large kernels.
The time complexity of non separabel 2D convo-
lution on an impulse map size n2 using a kernel
size N2 the is O(n2N2). For this reason one can
onvert both impulse map and kernel into the fre-
quency domain, perform the convolution there and
then convert back from frequency domain. With
kernel and impulse map converted to frequencies,
the convolution is a point wise multiplication of
the two. This is not a large job even for large ker-
nels. The conversion to and from frequency do-
main is done with a Fast Fourier Transform FFT
and an inverse thereof IFFT. Both have previously
been implemented efficiently on CUDA [Podlozh-
nyuk(2007)].

Convolution with CUDA In order to obtain the
density field and the smoothed pressure gradient
vector field, we will view the discretezised domain
as a 2D matrix and perform convolution with this
matrix and an appropriate smoothing kernel. The
result is written into 2D textures for quick cached
lookup later on. The domain matrix is initialized to
zero and then each agent will add a single impulse
to the matrix cell it occupies and the resulting ma-
trix is then convolved using the method described
in [Podlozhnyuk(2007)] which runs at 252 MPix-
els/s for a square separable kernel with a radius
of 9 on a GF9800GT. With textures of 1024x1024
texels this is expected to take 3.96ms for each con-
volution.

Textures When the fields are stored inside 2D
textures, the texture unit makes it easy to lookup
field values at real valued coordinates, even though
the texture is discrete. A texture unit can be set
to return bilinearly interpolated values. It should
be noted however that linear interpolation between
discrete samples of a function, which is non-linear,
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Figure 18: Pressure forces push away from higher
pressure towards lower pressure. The magnitude
depends on the difference in pressure

is a rough approximation. If for example the func-
tion f (x) = x2 is sampled for f (10) = 100 and
f (20) = 400 then the linearly interpolated value
for f (15) is 250 while the actual value for f (15) is
152 = 225. This is inaccurate, but it does not show
itself to be a problem in our implementation.

5.2 Separation force

The pressure force provides separation. Agents are
repulsed by high pressure, but are not attracted to
low pressure. Low pressure exist only when com-
pared to some other higher pressure. That higher
pressure in another direction is what pushes agents
towards lower pressure. This is basic but quite im-
portant. Presure forces, as seen in figure 18, only
push. They never pull.

P = ρcpressure (6)
Fpressure =−∇P (7)

5.3 Cohesion force

As stated previously, pressure pushes away from
high pressure towards low pressure. It does not at-
tract. There is however nothing preventing us from
making a fictional attractive pressure by using the
positive pressure gradient rather than the negative.
Fluids do not behave like this - but crowds do.

Figure 19: Kernels for separation and cohesion
and their weighted sum separation− cohesion.
An agent doing gradient descent on this sum will
end up in the minima surrounding the common
mean. In 2D there is one minimum forming a cir-
cle around the mean at a distance where the forces
are equal in magnitude but opposite in direction

There is a distance at which cohesion and sepa-
ration are equal in magnitude and opposite in di-
rection. At this stationary point, agents will be
content with keeping the distance constant. This
means that the two forces will need to have a dif-
ferent falloff-rate since there will be no station-
ary points when just adding two differently scaled
spiky kernels with the same support radius and the
same center. One kernel will always be greater
than the other. It is also obvious that the cohesion
should be stronger than the separation at a distance
and that close up it should be the other way around.
Therefore the cohesion pressure gradient has to be
calculated with a spiky kernel that has a larger sup-
port. Essentially we will make sure that the sum of
the two kernels form a spiky mexican hat - a spiky
version of a Difference of Gaussians.
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Figure 20: Viscous forces act to make the differ-
ences in velocity go to zero. A fast moving agent
close to a slow moving agent will create viscous
forces that will slow down the fast and speed up
the slow

5.4 Steering force

The viscous force is used to implement the mim-
icking behavior of agents. Viscous forces will ac-
celerate nearby agents towards equal velocity and
direction. It will speed up the slow and slow down
the fast until they have identical motion vectors, or
until they have moved away from each other. This
is seen in figure 20.

Fviscous = ∇vcviscous (8)

5.5 Static pathfinding and global
forces

While the fluid simulation view on a crowd can
deal with local inter-agent forces, there is a need
for pathfinding to support the larger goal of get-
ting from here to there. A goal can be a door lead-
ing out of a map of a building floor plan or the
free seats in a theater or something similar that the
agents want to reach.

The discretized domain consists of square cells
with each - apart from the ones at the boundary
- 8 neighbors. This can easily be seen as a con-
nected graph with vertices at the cells and edges
between neighboring cells. We have chosen to the
A* algorithm with no heuristic function.

Figure 21: Pathfinding starts in the green goal
nodes and spread out to the entire domain, filling
it with the cost of going between a given cell and
the goal

The A* algorithm is very well described so we will
not do that in this text. We only point out two de-
tails that we are doing differently. Firstly we do
not have an ordinary goal vertex to pathfind to in
the graph. Instead we pathfind until every vertex
has been reached and have had an actual travel cost
from the source calculated. Secondly, we do not
use a heuristic function which is not needed when
we want to examine the entire graph. The heuristic
function is normally used to avoid just that, and to
only look at the direct path from start to goal.

Goals A goal position in the simulation is de-
fined as a set of cells in the map as on figure
21 which are all considered goal positions. We
pathfind from all such goal cells and fill the en-
tire graph with calculated cost values from the goal
cells. The cost is the linear distance from center of
one cell to the center of the next. This means that
diagonal moves cost

√
2 while non diagonal moves

cost 1.

After such a pathfinding, every cell in the dis-
cretized domain will hold a cost of getting from it
to the goal. If the simulation has multiple different
goals then a pathfinding is calculated for each goal
and the cels will now hold multiple cost values -
the cost of getting to each goal.
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Figure 22: Static path cost for one exit located at
top left corner

There has been some research into using the GPU
for pathfinding but the focus seems to always
be on how to calculate a very large number of
paths simultaniously rather than calculating one
path whith effective use of a large number of
threads. Another form of pathfinding, allpairs-
shortest-path, has been investigated using CUDA
[Katz & Kider(2008)], but even though an all-
pairs-shortest-path calculation could be usefull for
us, it is an extreme overkill. It is fast compared to
doing all-pairs on the CPU, but it is a large prob-
lem and it is taking too long to solve. In addi-
tion to that, the implementation is not trivial. For
theese reasons we have currently implemented the
pathfinding on the CPU.

Cost gradient After pathfinding, or rather just
plain cost calculations, we can easily go from any
cell to a goal by folowing the negative cost gradi-
ent which can be calculated using finite difference
in the regular grid. Incidentally a finite difference
can also be implemented using separable convolu-
tion. Since the agents have real values positions,
the agent will need to lookup the cost gradient in-

between cells using bilinear interpolation. For this
reason, the costs gradient is stored inside a texture
so that the texture unit can perform the interpola-
tion for us.

Agents are controlled by forces and the pathfind-
ing can be considered a complex force that
changes in direction as the agent moves around.
The force does not point linearly towards the goal
but instead it points along the shortest path to the
goal from the current position.

5.6 Dynamic pathfinding

Dynamic pathfinding takes the crowd itself into
consideration. It tries to find the path of least effort
by avoiding dense parts of the crowd and in partic-
ularly parts of the crowd that does not move in the
direction the agent does.

The actual pathfinding works the same way as the
static counter part, but where the static version
was only concerned with the distance traveled, the
dynamic one penalizes moves through areas with
high density and areas with an oposing velocity
field.

The cost of high density areas is just the density
multiplied with a scaler which lets us change the
preferences of the agent, by making that agent
more or less concerned with congestion. If it is a
dark night filled with dangers, then an agent could
even be designed to prefer paths which were not
too isolated from the rest of the crowd.

The cost of going against the flow is based on the
observation that the (no special effort) motion vec-
tor at a certain position in the crowd will be equal
to the average motion vector at that location. It will
take extra effort to move in another direction and
the more the desired motion vector points away
from the smoothed field velocity vector, the more
effort it takes .

It will however cost nothing extra to move orthog-
onal to the average velocity or even to move faster
than the average velocity. Those will be handled
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Figure 23: A square crowd is placed so it blocks
the static shortest path. An agent moves around a
number of static agents spread throughout the do-
main to get to the goal

in the density penalty. Only crowd velocity going
against the agents own movement vector is penal-
ized by a clamped dot product as seen in (9).

cost =−min(0,v f ield • vdesired) (9)

Note that the velocity field is implicitly scaled with
the density of the crowd through the smoothing.
Away from the dense crowd the velocity field will
approach zero and have little influence on move-
ment cost5.

Since the smoothing kernels have unit integral the
sum of all the smoothed movement vectors will be
equal to the sum of all the individual movement
vectors.

Update frequency While the forces arising
from physical collisions among agents is immedi-
ate and needs to be calculated every time step, the

5This is why movement faster than the field velocity
should not be penalized

”forces” from dynamic pathfinding does not need
to run quite as frequent. A real human agent do
take some processing time to observe the crowd
and find the areas towards the goal where the
crowd moves the right away and the areas where
the crowd is not overly dense. We can therefore
relax the timing requirements quite a bit. This is
fortunate, considering that the current implemen-
tation of pathfinding is on the CPU and is not real-
time.

5.7 Forces in a crowd perspective
again

Local, fluid inspired, forces will provide separa-
tion, cohesion and steering. Global pathfinding
force will pull an agent towards its goal position.

An agent has to weigh the influence vectors which
will rarely point in the same direction. This is
done by multiplying with four different scalars.
The sum of weighed forces will then accelerate the
agent by a = F

inertia .

• Separation, this is identical to the negative
pressure gradient of the pressure from the nar-
row kernel −∇Pnarrow cseparation

• Steering, this is the viscosity ∇v csteering

• Cohesion, this is the positive pressure
gradient of the wide kernel pressure
∇Pwide ccohesion

• Pathfinding, this is the negative path cost gra-
dient −∇cost cpath
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6 Results

The described methods were implemented on
CUDA and a limited6 number of tests were per-
formed. Timing for various number of agents and
various sizes of domains were performed. Crowd
simulation was executed and observed for the de-
scribed behaviors. Some behaviors were clearly
seen while others were not.

6.1 Timing

As expected, the time spent calculating each step
of the simulation was dependant only on the size
of the domain. While it does take slightly longer
to write impulses for 10.000 agents than for 5.000
the influence of that part was not much of a fac-
tor in the measurements. Time spent calculating
the forces and performing the updates each step is
shown in table 1 and in table 2.

The time taken to perform dynamic pathfinding
was measured, and is shown in table 3. While the
pathfinding can run parallel with the simulation,
working on an older state and returning a delayed
optimal path, it will have to run on a coarser dis-
cretized domain or on a small domain in general.
The time spent doing static pathfinding is irrele-
vant since it is done as preprocessing.

6.2 Behavior

The behavior of the agents were realistic in that
they could be made to not intersect. This was
tested by counting the number of cells with an im-
pulse written into it and ensuring that each agent
had been assigned to a single cell through a sim-
ulation run. For lower repulsive forces and larger
cell sizes one should expect multiple agents in the
same cells though.

6See section 6.3

Lanes We did see lane formation, but not con-
sistantly. In figure 24 lanes are seen, but mostly
for one group. The red group are mosly showing
the lane behavior while the green groop is more
loose. It is unclear why one group forms clear
lanes and the other seems to move more loosely
in-between but it was a quite consistent observa-
tion. One group forms lanes and the other fills in
the space between lanes.

Vortices Both by visual inspection and by cal-
culating the curl of the smoothed velocity field,
we looked for the formation of vortices. We did
not find any. It is unclear if the crowd need to have
a specific relationship between speed, inertia and
separation and cohesion forces for this to occur.
The literature does not provide any clues to solve
the puzzle.

Braess’s paradox When testing how the exit
rate of a room with two doors compare to a room
with three dors, where one door is directly between
the other two, we would see the expected drop in
exit rate, but it required the dynamic pathfinding to
be off.

When the agents performed dynamic pathfinding,
they would avoid the expected congesting at the
center door, and simply move out through the other
two doors. Approximately one third of the agents
exited through each door and three doors were
faster than two doors.

If dynamic pathfinding was off, then the agents all
moved to the center door closest to the goal and
everyone exited through that door, but that was the
case both with one, two and three doors. Therefore
there was not a worsening of the exit rate with a
third door opening.

The problem is that we could only toggle between
entirely stuid or entirely clever agents. There was
nothing in between. This could possibly have
been implemented by letting some agents use the
dynamic pathfinding while others only knew the
static path.
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Figure 24: Lane formation. Red group moves right
to left and green group moves left to right. Both
groups are pushed from top and bothom to keep
them from spreading out too much. Note that the
density is visualized but extends farter away from
the agents than what can be seen in the coloring of
the smoothed densities

Figure 25: Same lane formation as in figure 24
with hand drawn lines marking the lanes

6.3 Stability of code

The implemented code was unstable. There were
random crashes and simulations which sometimes,
for no apparent reason, exploded. It is quite likely
that is has to with hardware problems on the sys-
tem used for implementation and test. The graph-
ics card has been seen to run quite hot which may
be the root of the problems.

It did however hinder thorough testing to some de-
gree and it does leave a slight uncertainty about the
correctness of the implementation.

7 Conclusion

We have had to conclude that while the methods
described here do have merit, they also face some
problems.

The convolution on GPU is quite fast indeed, but
having a large domain and having to perform mul-
tiple convolutions to find the different fields does
take time. It is in fact slower per simulation step
than what expected from the speed seen in the fluid
and n-body simulations released by Nvidia, which
do not use convolution. It simply is faster to han-
dle ordinary particle interaction, as is the norm for
SPH, than having to smooth the entire domain.
The smoothed densities and velocity fields does
support the dynamic pathfinding, but again we see
that the dynamic pathfinding is too slow on large
domains the way we implemented it.

Unless the entire field is required for visualization
or pathfinding or the domain is small compared to
the number of agents simulated, the convolution
method seems to be too out of the ordinary and
too slow.
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Num agents 512 1024 2048 4096 8192 10.000 20.000 40.000 60.000
Time pr. step 14.1ms 14.7ms 14.3ms 14.4ms 15.2ms 15.1ms 15.7ms 15.7ms 15.9ms

Table 1: Time pr. simulation step. Based on number of agents with constant domain size of 1024x1024.
Time does not include dynamic pathfinding or visualization. This is implemented on GeForce 9800 GT

Domain size 256 512 1024 2048 4096 8192
Time pr. step 3.2ms 4.1ms 14.7 68.1ms 230.2ms 920.6

Table 2: Time pr. simulation step based on domain size with constant agent number of 1024. Time does
not include dynamic pathfinding or visualization. This is implemented on GeForce 9800 GT

Domain size 256 512 1024 2048 4096
Time ms 37ms 252ms 630ms 2709ms 12754ms

Table 3: Time doing static or dynamic pathfinding on different domain sizes. This is currently imple-
mented on Intel Core2 Quad Q9555 2.83GHz CPU



REFERENCES I

References

Chattaraj, U. (2009). Understanding pedestrian motion across cultures. URL http://cms.shu.edu.cn/

Portals/286/005-tgf09-Ujjal-Chattaraj.pdf.

Clements, R. R. & Hughes, R. L. (2004). Mathematical modelling of a mediaeval battle: the battle of
agincourt, 1415. Mathematics and Computers in Simulation, 64(2), 259–269. URL http://dx.doi.

org/10.1016/j.matcom.2003.09.019.

Dijkstra, J., Timmermans, H. J. P., & Jessurun, J. (2000). A multi-agent cellular automata system for
visualising simulated pedestrian activity. In S. Bandini & T. Worsch (Eds.), Theoretical and Practical
Issues on Cellular Automata, Proceedings of the Fourth International Conference on Cellular Automata
for Research and Industry, Karlsruhe, 4-6 October 2000. Springer, 29–36.

Gingold, R. A. M. & J., J. (1977). Smoothed particle hydrodynamic: theory and application to non-
spherical stars.

Katz, G. J. & Kider, J. T., Jr (2008). All-pairs shortest-paths for large graphs on the gpu. In GH ’08:
Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 47–55.

Kirchner, A. & Schadschneider, A. (2002). Cellular automaton simulations of pedestrian dynamics and
evacuation processes.

Krause & Dyer, J. (2008). Sheep in human clothing. URL http://www.leeds.ac.uk/media/press_

releases/current/flock.htm.

Liu & Liu (2003). Smoothed particle hydrodynamics. World scientific.

Müller, M., Charypar, D., & Gross, M. (2003). Particle-based fluid simulation for interactive applica-
tions. In D. Breen & M. Lin (Eds.), Eurographics/SIGGRAPH Symposium on Computer Animation.
San Diego, California: Eurographics Association, 154–159. URL http://www.eg.org/EG/DL/WS/

SCA03/154-159.pdf.

Nvidia (2007). NVIDIA CUDA Compute Unified Device Architecture - Programming Guide.

Nvidia (2009). NVIDIA CUDA C programming - Best Practices Guide.

Podlozhnyuk, V. (2007). Fft-based 2d convolution. URL http://developer.download.nvidia.com/

compute/cuda/sdk/website/projects/convolutionFFT2D/doc/convolutionFFT2D.pdf.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In SIGGRAPH
’87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques. New
York, NY, USA: ACM, 25–34.

Reynolds, C. W. (1999). Steering behaviors for autonomous characters. URL http://citeseer.ist.

psu.edu/509294.html;http://www.red3d.com/cwr/papers/1999/gdc99steer.pdf.

Still, K. (2000). Crowd Dynamics. Ph.D. thesis, University of Warvick.

Top500Org (1999). URL http://www.top500.org/list/1999/06/.

http://cms.shu.edu.cn/Portals/286/005-tgf09-Ujjal-Chattaraj.pdf
http://cms.shu.edu.cn/Portals/286/005-tgf09-Ujjal-Chattaraj.pdf
http://dx.doi.org/10.1016/j.matcom.2003.09.019
http://dx.doi.org/10.1016/j.matcom.2003.09.019
http://www.leeds.ac.uk/media/press_releases/current/flock.htm
http://www.leeds.ac.uk/media/press_releases/current/flock.htm
http://www.eg.org/EG/DL/WS/SCA03/154-159.pdf
http://www.eg.org/EG/DL/WS/SCA03/154-159.pdf
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/convolutionFFT2D/doc/convolutionFFT2D.pdf
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/convolutionFFT2D/doc/convolutionFFT2D.pdf
http://citeseer.ist.psu.edu/509294.html; http://www.red3d.com/cwr/papers/1999/gdc99steer.pdf
http://citeseer.ist.psu.edu/509294.html; http://www.red3d.com/cwr/papers/1999/gdc99steer.pdf
http://www.top500.org/list/1999/06/


REFERENCES II
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